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The development of Long’s vortex 

By P.G. D R A Z I N ,  W.H.H. B A N K S  AND M.B. Z A T U R S K A  
School of Mathematics, University of Bristol, Bristol BS8 lTW, UK 

(Received 10 November 1993 and in revised form 17 October 1994) 

This paper describes the solution of Long’s problem for steady rotationally symmetric 
swirling jets in a uniform viscous fluid. Long found these vortices in 1958 by assuming 
a similarity form of solution, and in 1961 solved the consequent problem in the 
boundary-layer limit, finding dual solutions. The overall pattern of the solutions 
to the problem for general values of the Reynolds number is described. The linear 
spatial stability of the flows to small steady disturbances is analysed and a few 
results presented. In particular, details of the solutions and their stability are given 
asymptotically for small and large values of the Reynolds number. The asymptotic 
results for the basic flow are linked by direct numerical integration of the flow at 
several finite positive values of the Reynolds number. 

1. Introduction 
The structure of vortices, their stability and their breakdown are important in many 

applications of fluid mechanics, notably to dust devils and tornados in meteorology, 
and to leading-edge and wing-tip vortices in aerodynamics. Of the extensive literature 
on vortices, Long’s (1958, 1961) papers are a major contribution. He sought a 
similarity solution to represent a steady rotationally symmetric vortex with axial as 
well as swirling flow in a uniform incompressible viscous fluid, used the Navier-Stokes 
equations to derive a system of ordinary differential equations describing the assumed 
form of solution, and solved the system in the special case of a slightly viscous fluid. 
Thereby Long (1961) found that there are dual boundary-layer solutions for M > M,  
and no solution for M < M,, where the ‘flow force’ or ‘momentum transfer’ M is 
a dimensionless parameter which we shall define explicitly in the next section, and 
M,  is a critical value which Long calculated approximately. This property of dual 
solutions is characteristic of a turning point, known so widely now that bifurcation 
theory is fashionable but less well known when Long found his solutions. This 
knowledge leads us at once to conclude from the generic case of a turning point that 
the bifurcation at M = M,  corresponds to the change in the sign of a real eigenvalue 
of the linearized stability problem of the flow, so that either one of the dual flows 
is stable and the other unstable, or both are unstable to a different eigenmode. In 
fact, it has been found by Foster & Duck (1982), Stewartson (1982) and Foster & 
Smith (1989) that both these flows of an inviscid fluid are temporally unstable to 
helical modes, i.e. modes which are not rotationally symmetric. Khorrami & Trivedi 
(1994) have recently extended these results by including the effects of viscosity at 
large values of the Reynolds number; they also neglected nonparallelism of the basic 
flow and found new unstable modes. 

In view of this fact that the vortices are always unstable in the boundary-layer limit 
of small viscosity which Long considered, it is surprising that work on Long’s problem 
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has been largely confined to this limit. Foster & Jacqmin (1992) have, however, solved 
the problem asymptotically for large M and fixed values of the Reynolds number 
R. Shtern & Hussain (1993) also have solved a problem for a vortex closely related 
to Long’s, with the same similarity form of solution, but with a different boundary 
condition at the axis to drive the vortex, computing the solutions for a wide range of 
values of the Reynolds number and the flow force. It should be noted, however, that 
the character of the solution is very different. We shall report results for all values of 
R, not just large ones, and all values of M .  In particular we shall solve the problem 
asymptotically in the limits of small R and large flow force M ,  and link our results 
with those of Long for large R by direct numerical integrations of the system. This 
will give an overall picture of the results, the occurrence of multiple solutions and their 
instabilities. We shall mostly confine our attention to rotationally symmetric steady 
perturbations consistent with the similarity form, although, of course, limitation of 
the class of perturbations of a basic flow permits a demonstration of its instability 
but not of its stability. 

The phrase ‘spatial stability’ will often be used in this paper, so it should at once be 
made clear that this will refer to the spatial development of steady small perturbations. 
The bifurcation of one steady flow to another is closely related to their stability, so 
the evolution of small perturbations in space is closely related to their evolution in 
time, as well as of independent physical importance. However, a steady basic flow 
might become unstable to oscillatory perturbations at a Hopf bifurcation, and yet the 
theory of spatial stability to steady perturbations gives no indication of instability. 
So the restriction to steady perturbations permits the deduction of instability of the 
basic flow but not stability. Our results for spatial stability also complement those 
for temporal stability which are cited above. 

Benjamin’s mechanism of vortex breakdown (cf. Hall 1972; Leibovich 1978), namely 
the sudden change of one vortex regime to another, depends on the coexistence of two 
conjugate flows, i.e. equilibria, so that a disturbance may lead to an abrupt change of 
equilibrium, as in a hydraulic jump or a ‘catastrophe’. Other proposed mechanisms 
of breakdown involve the hydrodynamic instability of a vortex. We shall investigate 
these possibilities in the context of Long’s model, limited though that context is. 

2. Formulation of the mathematical problems 
2.1. The basic vortex 

Long (1958) assumed rotationally symmetric steady flow of a uniform incompressible 
fluid of density p, pressure p and kinematic viscosity v with a Stokes streamfunction 
y ( r , z )  such that the radial and axial velocity components are 

respectively, in terms of cylindrical polar coordinates ( r ,  4, z) .  He further assumed 
that there is a flow of similarity form with, essentially, 

y ( r , z )  = KzF(x ) ,  ub(r,z) = KG(x) / r ,  p ( r , z )  = -pK2H(x) / z2 ,  (2.2) 

where the similarity independent variable is 

x = r / z ,  (2.3) 
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and K is the constant swirl of the vortex at infinity, i.e. 

ru+ + K as r + co. (2.4) 
Another fundamental constant is the dimensionless flow force or momentum transfer 
defined as 

M = K-2 [ l w ( u i  + p / p )  rdr d+; (2.5) 

it can be shown by integrating the z-component of the Navier-Stokes equations over 
a plane z = constant that 

M = 2n (F12 - x 2 H ) / x  dx, I” 
independently of the value of z. Also the Reynolds number may be defined as 

R = K / v .  (2.7) 

u, = K(xF’ - F ) / r ,  u+ = KG/r ,  u, = KF‘/r,  (2.8) 

x3(  1 + x2)H’ + 3x4H = -(F2 - 2xFF’ + G2), 

~ ( l  + x2)G” + (2x2 - 1)G’ = -RFG’, 

x(1 + x2)F’’ - F’ = R(x3H - FF’), 

This flow, then, is a combined vortex and jet with axis r = 0 and velocity components 

where a prime denotes differentiation with respect to x .  Substitution into the r-, +-, 
and z-components of the Navier-Stokes equations now gives 

(2.9) 

(2.10) 

(2.11) 
after a little manipulation, integration and elimination. The appropriate boundary 
conditions determining a smooth solution at r = 0 and a flow tending to a uniform 
swirl K at infinity are 

F ( 0 )  = F’(0) = G(0) = 0, F’(co) = 2-1’2, G(w) = 1,  H ( w )  = 0. (2.12) 

These equations and conditions determine the steady rotationally symmetric flow, or 
flows, for given dimensionless parameters R and M .  It seems that the problem is 
well posed, although the ordinary-differential system (2.9)-(2.11) is of fifth order and 
there are six conditions (2.12), because the rotational symmetry of the system gives F 
as an even function of r and therefore of x, and the condition F’(0) = 0 is redundant 
if F is a smooth function of x2 at the origin. 

Note (cf. Burggraf & Foster 1977) that M may be determined either by equation 
(2.6) after the solution has been calculated, or by replacing (2.6) by its differential 
form, namely 

m’ = 2 n ( ~ ’ ~  - x 2 H ) / x ,  m ( ~ )  = 0, m(co) = M .  (2.13) 
The vorticity V x u and hence the helicity density u . (V x u) can easily be calculated 

J = ~ ~ r u . ( V x u ) r d r d +  

in terms of F,G. It follows that 

= 2nK22-’ Lm[x - ’ { ( l  + x2)F’ - xF}G’ - xP2{x(1 + x2)F” - F’}G] dx. (2.14) 

On anticipating the results of 93.1, it can be shown that 

J - 21/2nK2z-1 as R --+ 0, 
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and thence that in general J is non-zero. However, the helicity itself is unbounded 
because J is not integrable from z = 0 to z = 00, although the unboundedness does 
little more than reflect the intrinsic singularity of Long’s solution at the origin. 

2.2. The linear spatial stability problem for rotationally symmetric modes 
Burggraf & Foster (1977) considered some small spatial perturbations of Long’s 
boundary-layer flow at large values of the Reynolds number R. We shall generalize 
their work, revealing the importance of its context by treating not only all values of R 
but also more-general dependence of the steady perturbations of the flow on the axial 
coordinate z ; this leads, as follows, to the spatial eigenvalue problem governing the 
decay (or growth) of the flow downstream as it approaches (or leaves, respectively) 
Long’s flow. Write 

Y = K(YO + wd, ~6 = K ( ~ o  + u l ) / r ,  p = p K 2 ( p o  +PI),  (2.15) 

where the basic flow is given by 

~ o ( r ,  Z)  = zF(x) ,  uo(r, Z )  = G(x), po(r, Z )  = - H ( x ) / z 2 ,  

as in equation (2.2), and then linearize the Navier-Stokes equations for small pertur- 
bations tpl,ul,pl. It can then be seen that the variables are separable with solutions 
of the form 

yl(r,z) = z’f(x), uI(r,z) = zA-’g(x), p l ( r , z )  = -z”’h(x), (2.16) 

where A is the separation constant, possibly complex. The r-, 4- and z-components 
of the linearized Navier-Stokes equations imply at length that 

x3(1 + x 2 ) f ” ’ - x 2 [ ( ~ -  1 ) + 3 ( ~ - 2 ) ~ 2 1 f ” + ( ~ -  ~ ) ~ [ i  + 3 ( ~ - 2 ) ~ 2 1 f ’ - ~ ( ~ -  i ) ( ~ - 2 p f  

= R [-x3 h’ - x 2 F f ”  +(A+ 1)xFf’ +(A- 3)x2F’f’ -Ax2F”f - A(A- 3)xF’f - 2AFf -2Gg], 
(2.17) 

x(l+x2)g”- [l +2(A-2)x2]g’+(A- l)(A-2)xg = R[-AG’f-Fg’+(A- l)F’g], (2.18) 

x2(1 + x2)f”’ - x [ l  + 2(A - 2)x2]f” + [l + (A - l ) ( A  - 2)x2]f’ 

= R[x4h’ - (A  - 3)x’h - xFf” + (A  - 3)xF’f’ + Ff’ - A(xF” - F’)f], (2.19) 
respectively. It helps a little to subtract equation (2.17) from x times equation (2.19) 
to get 
(A - 2){x2(1 + X2)f” - x[l + 2(A - 1)x2]f’ + A(A - 1)x2 f }  

= R[x3( 1 + x2)h’ - ( A  - 3)x4h - AxFf’ + A(A - 2)xF’f + 2AFf + 2Ggl. (2.20) 
The linearized boundary conditions are that 

f(0) = f’(0) = g(0) = f’(00) = g ( a )  = h ( a )  = 0. (2.21) 

The perturbation is taken for a fixed parameter M (and R, indeed), so the linearized 
form of equation (2.5) gives 

lm(2F’f ’  - x2h)/x  dx = 0. (2.22) 

This poses a problem (2.19), (2.18), (2.20)-(2.22) to determine eigenvalues A and 
corresponding eigenfunctions f ,  g, h. We conjecture that there is spatial ‘instability’, 
with some steady disturbances growing faster than the basic flow as z + 00, when 
there is at least one eigenvalue, of three sequences of eigenvalues whose real parts 
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decrease to -00, such that Re(A) > 1. (This conjecture is speculative, being based on 
no more than an analogy with Jeffery-Hamel flows (Banks, Drazin & Zaturska 1988) 
and some fragmentary evidence below.) 

It can be verified that a special solution of equations (2.18)-(2.20) is given in explicit 
terms of the basic flow by 

1=0, f = x F ’ - F ,  g=xG’, h=xH’+2H.  (2.23) 

This solution follows because the flow is invariant under the continuous group of 
translations in the axial direction, z H z + 6 for all real 6. It is a simple generalization 
of a result of Burggraf & Foster (1977, 93) for the boundary-layer case. However, it 
is an eigensolution for all M ,  R because it in fact also satisfies conditions (2.21) and 
equation (2.22), i.e. x 2 ~  + $ as x + 00. 

2.3. The spatial stability problem for asymmetric modes 
Next we examine stability to helical modes. Both variables 4 , z  may be separated 
by assuming that the perturbations are proportional to ein6 so that u1(r,4,z) = 

treated without recourse to solving a partial differential system. Thus we express 

zl-l e in6 6(x) etc. In this way the linear stability of the flow to spatial modes may be 

(up, u+, u,) = K(uo + u1, uo + v1, wo + w1)/r, P = PK2(Po + Pl), (2.24) 

where ( U O , U O ,  WO) = (xF’ - F ,  G, F’), PO = -H/z2, as in equation (2.2). Then, on 
linearizing the Navier-Stokes equations for small perturbations u1, u1, w1, p1, it can be 
seen that the variables may be separated by taking spatial modes of the form 

(2.25) 

where the non-negative integer n is the azimuthal wavenumber and the complex 
eigenvalue A gives the rate of spatial growth or decay in the axial direction. 

1-1 in$ 1-3 in+ (u1,v1,w1) = z e (G(x),fi(x),$(x)), P1 = --z e P(X), 

It follows at length that the linearized r-equation gives 

2YflG-2inB = R[-x3f”-xFG’+x2F’’a+(l”)xF’G+2Fa+inGa-2G6-x3F’’~],  (2.26) 

the &equation gives 

2inG + 2Yn6 = R[-inx2fj + xG’G - xF6’ + (A - 1)xF’6 + inGO - x2G’8], (2.27) 

the z-equation gives 

9 f18  +8 = R[x4fj’-( A- 3)x3fj+(xF”-F’)G-xF8’ -x2F”8  +( 1-2)xF’G + F 8  +inGB], 
(2.28) 

and the continuity equation gives 

(2.29) x,’ + in6 - x28’ + (A - 1)xG = 0, 

where the linear operator 9,, is defined by 

Y,, = x2(1 + x2)d2/dx2 - x[l + 2(A- 2)x2]d/dx + [-n2 + (A - 1)(A - 2)x2]. (2.30) 

The boundary conditions (cf. Batchelor & Gill 1962, p. 534) are that 

8(0) = fj(0) = G(0O) = 6(0O) = 8(m) = j j(0O) = 0, (2.31) 

and 
(2.32) 

This is the spatial eigenvalue problem for general asymmetric perturbations. Note 
that linearization of equation (2.5) for fixed M is automatically satisfied if n # 0. 

G(0) = O(0) = 0 if n # 1 or 6(0) = iG(0) if n = 1. 
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It can be verified that a special solution of equations (2.26)-(2.29) is 

} (2.33) 
1 = 0, n = 1, j3 = H’, Ci = [(x2F” - xF’ + F )  - iG]/x, 
8 = [(xG’ - G) + i(xF’ - F ) ] / x ,  fi = (xF” - F ’ ) / x .  

This solution follows because the basic flow is invariant under the continuous group 
of translations perpendicular to the axis. It is an eigensolution for all M ,  R because 
it also satisfies the boundary conditions. 

Finally, we note that the temporal linear stability problem is reducible to an 
eigenvalue problem for normal modes with an inseparable partial differential system 
with independent variables r, z by assuming that perturbations are linear combinations 
of modes of the form ul(r, 4, z ,  t )  = ei(St+”%(r, z )  etc. 

3. The asymptotic solution for small R 

problem asymptotically in the Stokes limit. 
In this section we shall find the basic solution F ,  G, H and solve its spatial stability 

3.1. The basic vortex 
First find the basic flow by assuming that there exist convergent power series of the 
form 

F=Fo+RF1+ ..., G=Go+RGl+ ..., H=H-l/R+Ho+RHl+. . .  as R h o .  (3.1) 

We take the leading term in the expansion of the pressure function H to be of order 
R-’ to balance the pressure with the viscous forces and neglect the inertia in the 
leading approximation. Therefore equations (2.9)-(2.11) give 

(3.2) 

(3.3) 

(3.4) 
respectively. Solving these equations and the boundary conditions (2.12), we find at 
length that the basic flow in this limit is given by 

x3( 1 + x2)HLl + 3x4H-1 = 0, 

x(l + x2)G; + (2x2 - 1)Gb = 0, 

x(1 + x2)F; - Fi = x 3 X 1 ,  

Fo(x)  = 2-’12[(1 + x ~ ) ~ / ~  - 11 - ia[ l  - (1 + x ) -‘/2], Go(x) = 1 - (1  + x ~ ) - ~ / ~ ,  

&(x) = a(1 + x2) -3 /2 ,  (3.5) 
where a is an arbitrary constant. However, we must satisfy equation (2.6) in order that 
the flow force has its given value. To be consistent with our Stokes approximation 
this implies that 

for some constants MP1,Mo,M1, ... . Then equation (2.6) gives M-1 in terms of H-1 
independently of Fo,Ho, and it follows that MP1 = -2na. It can at great length be 
shown that GI is a function which is linear in a and introduces no new constant, 
but HO is a function which is quadratic in a and introduces a new constant, p say, 
on integration; some of the details are in Appendix A (which is not printed with 
this paper, although a copy may be obtained on application to any author or to the 
Editor of the Journal of Fluid Mechanics). We have also evaluated Mo on use of the 
forms for Fo,Ho, finding that 

M = M - l / R +  Mc, + RMl + ... as R + 0 (3-6) 

Mo = 3n(l0g 2 - 1) - 2-1 /2~a ( l~g  2 + 1) + ia271(9 - 8 log 2) - 2-’/2~p. (3.7) 
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At this stage we may take the limit as R + 0 either (i) for fixed MR = M-1, in which 
case Mo = M1 = ... = 0, we deduce that CI = -M_1/2n, find f l  from equation (3.7) 
with MO = 0, and proceed as far with the calculation as is required; or (ii) for fixed 
M = Mo, in which case M-1 = MI = ... = 0, a = 0, and f l  = 2ll2[3(log 2 - 1) - Mo/n]. 

3.2. The linear spatial stability of rotationally symmetric modes 
Next let us solve the spatial eigenvalue problem for rotationally symmetric modes. 
We may expand 

l = l o + R I ~ +  ..., f = f o + R f l +  ..., g=go+Rgl+ ..., h = h _ l / R + h +  ... as R + 0 ,  
(3.8) 

and substitute the expansions into the problem (2.18)-(2.21). First note that the 
problem is independent of the basic flow in the Stokes limit. Also boundary conditions 
(2.21) give 

(3.9) fO(0) = f m  = go(0) = flx4 = go(.o) = h-l(W) = 0. 
It can be seen that equation (2.18) gives the go-equation, 

x(1 + x2)g;l - [l + 2(l, - 2)x2]gh + ( l o  - l)(l, - 2)xgo = 0, (3.10) 

which decouples from the other two equations. This can be shown to be a hypergeo- 
metric equation for go as a function of 1 + x2 with a = - ; ( l o  - 2), b = -I(& 2 - l), c = 

- ( l o  - 2 )  in standard notation (cf. Abramowitz & Stegun 1964, Chap. 15). It follows 
at length that the eigensolution then is 

20 = -1, fo(x) = 0, go(x) = Qdx), h-i(x) = 0, (3.11) 

for 1 = 0,1,2, ..., where 

for j = 0,1, ..., and the Pochhammer symbols are defined by ( q ) k  = r ( q  + k ) / T ( q )  for 
all q.  For these swirling modes higher terms f,, h, are not all zero. Note also that 
with & = 0 we recover a Stokes limit go = xGb of the eigensolution given, for all R, 
by equations (2.23). 

In addition, there are eigensolutions for which go is, but f0,h-l are not, zero 
everywhere. Equations (2.19), (2.20) give 

x2(1 +x2)f:-x[l +2(& -2)x2]f{+ [I +(&- I)(Ao-2)x2]f; = x4hL1 - ( L o - 3 ) ~ ~ h - l ,  
(3.13) 

(3.14) 
It can be shown by use of a little calculus and algebra that if h-l(x) = 0 for all x and 

x(l  + x2) f {  - [l + 2(& - l)X2]f;, + l O ( l 0  - 1)xfo = 0 (3.15) 

then both equations (3.13), (3.14) are satisfied. Now equation (3.15) is the same as 
(3.10) on replacing & by l o  + 1, and so is another hypergeometric equation for f o  

(no  - 2){x( 1 +X2)f,” - [1+2(& - 1)x2]fA -I-&(& - 1)Xfo) = X2( 1 +X2)h’_1 - ( l o  - 3)X3h-1. 
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as a function of 1 + x2. Thus, using the boundary conditions fo(0) = fA(co) = 0, we 
deduce that 

} (3.16) 
l o  = 0, f o ( x )  = 1 - ( 1  + x2)-1/2, go(x) = h-l(x) = 0, 

l o  = -1 - 1, fo(x) = Q,(x), go(x) = h-l(x) = 0 

for 1 = 0,1,2, ... . Note that, on using basic flow (3.5) with a = 0 and equations (2.23) 
in the Stokes limit, we verify the solution above for l o  = 0 with f o  = xFh - Fo,h-1 = 

x H I _ ~  + 2H-1. 
Also the derivative of the quotient of equation (3.14) and x gives 

X ( 1  X2)hr1 4- [I - 2(& - 4)X2]h\l (2, - 3)(& - 4)Xh-1 = 0, (3.17) 

on elimination of f o  by use of equation (3.13). This is again a hypergeometric 
equation for h-1 as a function of 1 + x2, but now with a = - ; ( l o  - 4), b = - $ ( l o  - 3), 
c = -(A0 - i). From this equation we can find h-1, using its boundary condition at 
infinity, find f o  from equation (3.14), and apply the two boundary conditions on fo. 
This eventually gives 

- 1  I (3.18) 

Note that this solution is not unique, because for each eigenvalue l o  we may add to 
the solution an arbitrary multiple of the solution (3.16). It may thereby be shown to 
be compatible with the solution for l o  = 0 which follows on using basic flows (3.5) 
with a = co and equations (2.23) in the Stokes limit. 

3.3. The linear spatial stability of asymmetric modes 

1 20 = -1, fo(x) = - ~ Q I ( x ) ,  go(x) = 0, h-l(x) = x Ql(x)-  

We next formulate the eigenvalue problem for asymmetric modes, expanding 

} (3.19) 
2 = l o  + Rl1 + ..., B = Bo + RG1 + ..., 8 = 80 + R81 + ..., 
8 = 80+R81+ ..., f i = f i _ 1 / R + f i o +  ..., as R+O, 

L?,& - 2in60 = -x3fiL1, 

2inBo + ,4”,C0 = -inx2fi-1, 

Yn80 + 80 = x4ft1 - (A0 - 3)x3b-l, 

xBb + in80 - x2kb + (ilo - 1 ) x 8 ~  = 0. 

and finding 
(3.20) 

(3.21) 

(3.22) 

(3.23) 
The boundary conditions (2.31), (2.32) still apply in the Stokes limit. 
The eigensolution (2.33) in the Stokes limit gives two eigensolutions here for 

l o  = 0, n = 1, namely 

(3.24) 1 
1 

Bo(x) = {2-’/2[(1 + 2x2)/(1 + x2)3/2 - 11 - i[I - 1/(1 + x ~ ) ~ / ~ ] } / x ,  
&(x) = {(I + 2x2)/(1 + x2)3/2 - 1 + 2 ~ ’ / ~ i [ 1  - 1/(1 + x~)’ /~]} /x ,  
8o(x) = -x2/21/2(1 + x2)3/2, @-1(x) = 0, 

and 

(3.25) 
&(x) = [(l + 2x2 + 4x4)/(1 + x ~ ) ~ / ~  - 1 ] / 2 ~ ,  
&(x) = i[l - (1 + 2x2)/(1 + x ~ ) ~ / ~ ] / ~ x ,  Go(x) = 3x2/2(1 + x2)5/2, 

fi-i(x) = - 3 ~ / ( 1  + x ~ ) ~ / ~ .  

Each of the eigensolutions in this section gives spatial stability, as we might have 
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anticipated - after all, they are no more than some solutions of the linear Stokes 
equations in the disguise of an unfamiliar system of coordinates. However, the basic 
flows and their stability characteristics serve not only to verify the stability of the 
basic flow in the Stokes approximation, but also to provide a contrast with Long’s 
boundary-layer solutions of the next section, and to use as a predictor to start off the 
numerical solutions. 

4. The asymptotic solution for large R 
4.1. The boundary-layer limit of the basic vortex 

After deriving equations (2.9)-(2.1 l), Long (1961) went on to transform the variables 
to 

(4.1) y = Rx/21/2 = Kr/&z, f(y) = RF(x), r ( y )  = G(x), s ( y )  = H ( x ) / R 2 ,  

took the limit as R + co for fixed M ,  and deduced the ‘boundary-layer’ equations 

2y3d + r = 0, 

y r ”  - (1 - f)r’ = 0, 

yf” - (1 - f)f’ - 4y3s = 0, 

(4.2) 

(4.3) 

(4.4) 
where here a prime denotes differentiation with respect to y. (These equations 
may alternatively be obtained by starting from the boundary-layer equations derived 
directly from the Navier-Stokes equations : such boundary-layer equations have been 
called the quasi-cylindrical equations by Hall (1966). Note also that this function f is 
different from the one defined in equation (2.16).) In this case, 

u, = v(yf’ - f)/r, ub = KT/r ,  u, = Kf’/21/2r, p = -pK4s/v2z2. 

Similarly, equation (2.13) gives 

m’ = n(f’* - 4y2s)/y. (4.5) 
The appropriate conditions for this boundary-layer form are that 

f(0) = f’(0) = r(0) = m(0) = 0, f’(co) = T(co) = 1, s(co) = 0, m(co) = M .  (4.6) 

Long calculated the solutions of this problem numerically. His results are so 
fundamental to our work that we reproduce a few of them briefly in the bifurcation 
diagram of figure 1: we have, following Long, chosen Lf’/2y],=o as the state variable 
and M as the behaviour variable but we have used our own numerical results (see 
§5), which are consistent with those of Burggraf & Foster (1977, Table 1). It can 
be seen that there are two solutions for M > M,  and none for M < M,, where in 
fact M,  = 3.75. One solution, said to be of type 11, has an axial velocity profile 
with a maximum on an annulus, one minimum on the axis r = 0 and another at 
r = co; the other solution, said to be of type I, has however, for M > 4.71, an axial 
profile of jet-like shape with a single maximum on the axis r = 0 and minimum at 
r = 00. The solutions of types I and I1 join at the bifurcation point where M = M,  
- which we anticipate is a point of marginal stability with respect to one mode. 

4.2. The linear spatial stability of rotationally symmetric modes 
The boundary-layer limit of the spatial stability problem for rotationally symmetric 
modes may be formulated by a procedure similar to the one given in the previous 
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FIGURE 1. The bifurcation diagram in the ( M ,  Lfl/2y],,o)-plane for the boundary-layer solutions of 
Long (1961). Note that [ v z u , / K ~ ] ~ , o  = Lfl/2y],=o = [F’/Rx],=o. 

subsection. We define 

?(Y) = Rf(x), f(Y) = g b ) ,  YY) = W / R 2 ,  

substitute into equations (2.17)-(2.19) and take the limit as R -+ co. This gives 

y38’ +rf = 0, (4.7) 

y f ”  - (1 - f)f’  - (1 - 1)f’f + AT’? = 0, 

y*f”’ - y( 1 -f)3” + [l -f - (1 - 3)yf’If’ + A(yf” -f’)j - 41y48’ -(A- 3)y38] = 0, (4.9) 

(4.8) 

for the determination of the eigenvalue 1 to leading order. Similarly 

A’ = 274f’j’ - 2y28)/y. (4.10) 

The linearized boundary conditions give 

J(0)  = T(0) = f (0)  = A(0) =]’(co) = f(co) = $(a) = A(o0) = 0. (4.11) 

The eigensolution (2.23) for all R, M becomes 

i = 0, 3 = yf’ - f ,  f = yr’ ,  8 = ys’ + 2s 

in the boundary-layer limit. Burggraf & Foster (1977, 93) originally found this solu- 
tion fo; the boundary-layer limit, and also found numerically a second solution with 
1 = 0,r = 8 = 0: we note the consistency of the second solution with the analysis of 
93.2 for small R. 

4.3. The linear spatial stability of asymmetric modes 
A balance of terms in the spatial stability problem for asymmetric modes is possible 
in the limit as R -+ co if 

a(x) = a&) + ..., ;(x) = &(y) + ..., $(x) = $o(y) + ..., B(x) = R2Bo(y) + ... . (4.12) 
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On substituting these forms into equations (2.26)-(2.29) and taking the boundary-layer 
limit, we obtain the equations 

2 r  60 - in r  Co + 2y3g = 0, (4.13) 

- y ~ ’ &  - inroo + 2iny2fio = 0, (4.14) 

2-’/2(yf’’ - f’)& + in r  $0 = 0, (4.15) 

yiib + in60 = 0. (4.16) 
Note that these equations are of inviscid form and are independent of 2 . We 
conjecture that 2 is determined at the next stage of the approximation for large R. 
Note further that we can eliminate fi0 and 60 to get an equation for in terms of r : 
we find that 

y2rfi: + y r  Gb - (y2r” - y r ’  + n 2 r ) &  = 0. (4.17) 
We further conjecture that this ‘outer’ solution is common to all eigensolutions for 
n = 1,2, ... but that appropriate ‘inner’ solutions will determine the limits of the 
eigenvalues A. 

These conjectures may be supported by appeal to the special eigensolution (2.33). 
On abstracting from iC the leading-order term, which is proportional to r / y ,  it is easy 
to see that when n = 1 the equation for 60 is satisfied identically. It is then possible to 
deduce i i )o,f io from the above equations, or, indeed, directly from the terms of leading 
order in equation (2.33). 

4.4. Perturbation of a basic vortex 
Next we consider perturbations of a given boundary-layer solution of Long’s vortex 
due to small changes of the flow force in order, especially, to elucidate the structure 
of the turning point at M = M,. 

The linear stability problem of 54.2 may be summarized as giving 

W = v[zf(y) + Yll ,  Yl(r,z) = zA(z)?(y), (4.18) 

where 
dA 
dz 

2- = (A - 1)A (4.19) 

for fixed M.  Now if M = M,  we find that the principal or highest eigenvalue 2 = 1. 
Further, if M = M,  + E then 

1 - 1 = 61/22 1/2 + €21 + . . . as E 5- 0. (4.20) 

This is the linear theory of the spatial development of the least stable axisymmetric 
disturbances for fixed M close to M,. 

Also it may be shown by perturbation theory that the basic similarity solution is 
given by 

W = V[ZfO(Y) + W l l ,  Yl(r,z) = zA(z)ul(Y) (4.21) 
where 

0 = ,a2 - A2 (4.22) 
approximately, and a2 can be expressed explicitly as the quotient of a linear function 
of the adjoint eigensolution evaluated at the boundaries y = 0,m and of an integral of 
the product of the adjoint eigensolution and a quadratic function of the eigensolution. 
(The details of the perturbation are given in Appendix B, a copy of which may be 
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obtained on application to any author or to the Editor of the Journal of Fluid 
Mechanics.) 

It follows that the weakly nonlinear theory for spatial development of the flows 
with small changes of M from M,  gives equation (4.21) where (4.19) and (4.22) are 
synthesized as the equation 

(4.23) 

governing the growth downstream of the slowly varying small amplitude A. This 
equation may be derived directly by perturbation theory for small E and A. It governs 
the initial stages of the abrupt spatial development of disturbances of the basic 
flow for M = M,  when M is slightly less than M,  as well as the spatial stability and 
instability of both the dual flows when M is slightly greater than M,. The quantitative 
behaviour depends on the eigensolution at M = M,. 

5. Numerical solutions 
5.1. Numerical methods 

We have indicated that when the Reynolds number R is large there are two solutions 
of Long's problem for each M > M,, of which the type I solution is stable and the 
type I1 is unstable to disturbances of form (2.16) (but both are unstable to inviscid 
helical disturbances). However, when R is small there is a unique solution for given 
M and it is stable. This poses the problem of finding the number and behaviour of 
the solutions for intermediate values of R and all M.  This bifurcation problem will 
be addressed next by numerical methods. 

To find the basic flow we solve the system (2.9)-(2.11), (2.13), (2.12). However, 
because the equations are singular at x = 0, we use power series for F ,  G, H ,  m to 
integrate away from the origin. We find that the series have the forms 

} ( 5 . 1 )  
F ( x )  = ax2 + 44x4 + ..., G ( x )  = bx2 + b4x4 + ..., R H ( x )  = c + c2x2 + ..., 
m(x) = m2x2 + m4x4 + ..., 

where m2 = n(4a2 - c/R),m4 = n(2aa4 - c2/4R),a4 = $(c - 2a2R - 2a),b4 = ib (3  + 
aR), c2 = -; [3c + R(b2 - 3a2)] and a, b, c are constants. Further, for x S- 1 we use the 
asymptotic results 

F'(x) = 2-'12 + 0(xP2), G(x)  = 1 + O(x-'), H ( x )  = ix-2 + 0(r3)  as x -+ 00. (5.2) 

Large ranges of integration are needed because of the algebraic rather than exponen- 
tial decay. 

It is possible in principle to use these forms to integrate equations (2.9)-(2.11), 
(2.13) by fixing, say, R , a  and then finding b,c iteratively by requiring that F'(x) + 

2-'/2,G(x) + 1 as x -+ co. We see from relations (5.2) that the latter limit can be 
replaced by H ( x )  - G(x) /2x2 .  The integration gives rise to the second parameter, 
M = m(co). Of course, the iterative procedure to find b,c  is based on the assumption 
that a solution exists. It is also possible to fix R, M and determine a, b, c iteratively 
by requiring that F'(x) + 2-'/2,G(x) -+ 1 as x -+ 00. We have used this procedure 
for R < 15 to obtain solutions, and we present some details below. However, Long 
(1961) devised a method of rescaling the variables in his numerical solution of the 
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boundary-layer problem in order to reduce the number of unknowns. We have 
extended the method to apply it to the problem for finite R by writing 

F(x) = R-'XF(X), G(x) = (c/R3)'l4G(X), H(x) = (c/R)R(X), m(x) = (C/R~)'/~*(X), 
(5.3) 

where X = Rx, R = (Rc)'l4. As usual, we assume a fixed pair of values of M ,  R. The 
governing equations (2.9)-(2.1 l), (2.13) now become 

~ 3 ( 1 +  x ~ / R ~ ) R '  + 3~4H/R2 = -G2 + x~[~F(xF'  + F )  - P ~ I / R ~ ,  

n(1 + , 2 / R 2 ) G  + (2X2/R2 - 1 + X F ) G  = 0, 

% ( I +  x ~ / R ~ ) ( x P  + 2 ~ ' )  + ( X F  - I)(XF' + F )  = 21/2~3fi, 

m' = 27c[(XFI + F)2 - X2R]/X. 

(5.4) 

(5.5) 

(5.6) 

(5.7) 
For 0 < X < l  we find that F(X) = BX + Zi3X3, G(X) = 6X2 + 64X4, B(X) = 1 + 
&X2, m(X) = 7c(4a2 - 1)X2 + m4X4 approximately, where a = ~ ( R / c ) ' / ~ ,  6 = ~ ( R / c ~ ) ' / ~  
and 8 3 , 6 4 ,  C2, m 4  are functions of B, 6, R. Also we require that P + 2-1/2(R3/c)1/4, G + 

(R3/~)1 /4 ,  fi - (R3/c)1/2/2X2 for X % l .  So we can, for example, assign values to R,ii 
and determine 6 by requiring that 

R-G2/2x2 + O  as X +  00, (5.8) 

in a way analogous to Long's. Then, from the limiting value of G(X) as X + co and 
the definition of R we can determine R, c, a, b, m(m) in turn. As noted earlier, given a 
value of R we can determine B , 6  if we not only satisfy condition (5.8) but also use 
a prescribed value of m(m) = M .  Note also that on taking the limit as R + co we 
recover a form equivalent to Long's. 

5.2. Numerical results 
Using these methods, we first calculated solutions for small values of the Reynolds 
number R (checking each by use of the Stokes solutions of $3) and then increased 
R bit by bit. We took M = 4, > M,, so that a = 0 in solution (3.5), and found 
solutions, starting at R = 0.1, for increasing values of R. The solutions approached 
the boundary-layer solution of type I as R became large; this is demonstrated by the 
plot of a scaled axial velocity (w for 0 6 R d 1 and w/R for 1 d R) versus R in figure 
2(a), where w = [ZU~/K] ,=~ = [F'/x],,o. We have repeated these calculations with 
M = 6 and have also plotted the results in figure 2(a): note again the continuation 
from the Stokes analytic result to Long's boundary-layer result for the solution of 
type I. Some scaled axial velocity profiles are shown in figure 3. In figure 3(a) we 
plot, for M = 4, w/R versus x for R = 1,5,10, and in figure 3(b) we plot w/R versus 
Rx (the boundary-layer variable) for R = 10,15,80.244. (The precise choice of the 
value 80.244 was merely a product of the numerical method.) Note that the value of 
R at which the axial velocity develops an off-axis maximum lies between 5 and 10; 
no special calculations were performed to determine this value more accurately. 

We have also obtained solutions starting with the boundary-layer solution of type 
I1 for M = 4 and a large value of R :  the results were then calculated for progressively 
smaller values of R, and are summarized in figure 2(b). The results are highly 
suggestive of a turning point at R = 10.8. However, the computations were proving 
difficult and we did not proceed further. Indeed, it appeared that as the ends of the 
curves shown in figure 2(b) are approached the coefficient 6 in G ( X )  tends to zero. 
Since this implies that 64 tends to zero, it appears that the profile for G(X)  (and hence 
for G(x)) may eventually develop a thin shear layer in which its variation between 0 
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FIGURE 2. Plots of w/R versus R for various values of M, where w = [zu,/K], ,o = [ F ’ / x ] , a .  
(a) The continuation of the solution of type I. The dashed curves show the corresponding small-R 
results from the first two terms of the Stokes solution. Note that w is plotted for R < 1. (b) The 
continuation of the solution of type 11. 
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FIGURE 3. Scaled axial velocity profiles, w = [ ~ u , / K l , ~ ,  for M = 4. (a) Plots of w/R versus x for 
various values of R < 10. (b) Plots of w/R versus Rx for various values of R 2 10. 
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FIGURE 4. Scaled axial velocity profiles for M = 6. (a) Plots of w/R versus Rx for various values of 

R 2 22.29. (b) Plots of w/R versus x for various values of R < 22.29. 

and 1 takes place away from the origin (see Foster & Smith 1989, $3.2), who found 
such a shear layer for Ms-1). We again repeated the calculations for M = 6, and the 
results are summarized in figure 2(b). The results for M = 4 and M = 6 are strikingly 
different: note that with M = 6 there are two turning points which result in at least 
four solutions for 19.45 < R < 20.90. (In addition to the four solutions shown in 
figure 2(a, b), Dr V. Shtern (private communication) has reported turning points on 
some curves with fixed M such that they return to the right as R increases.) As in the 
case when M = 4, with R = 18.5 the calculations were proving difficult and we did 
not proceed further along the solution curve. However, to help with the interpretation 
of the solution surface in (R, M ,  w/R)-space, we obtained results for other values of 
M :  in particular, we present results when M = 5.5. Note that the region of multiple 
solutions has greatly diminished (17.7 < R < 17.9), and we anticipate that a cusp 
occurs at M = M', R = R', where M' = 5.3, R' = 17. Results for M = 4.5 also are 
plotted. There are two different flows at the point where the solution curve for M = 6 
intersects itself in figure 2(b), so that there is no bifurcation there; the same is true for 
M = 5.5 and, presumably, some other values of M .  This semblance of a transcritical 
bifurcation is merely due to our projecting all flows onto the axis of a single state 
variable, namely w/R: other state variables of the two solutions at the intersection 
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M 

w t  
FIGURE 5. A plot of the curves with equation w = w(R, M )  for various values of M ,  as defined by 

equation (5.9). The branches below the R-axis correspond to w > 0 and those above to w < 0. 

FIGURE 6. Schematic sequence of bifurcation diagrams in the ( M ,  w/R)-plane for various values of 
R: (a )  R < R', (b)  R = R*,% 17 (CUSP), (c )  R > R'. 

of the curve with itself have different values. So the curves of figure 2(b) might be 
regarded as analogous to different views of a nonplanar smooth wire, the occurrence 
of the loops and the cusp being merely due to projection onto the planes of view. In 
figure 4(a) we plot, for M = 6, w/R versus Rx for R = 306.72,39.66,22.29. In figure 
4(b), we plot w/R versus x for R = 22.29,19.48,19.25. Note the change in the flow 
pattern in the neighbourhood of the loop in the bifurcation diagram. 

Again, it may help to consider a simple model which is topologically equivalent to 
the curves in figure 2(b) in order to describe the solution surface in (R, M ,  w/R)-space. 
The curves seem to be equivalent to the the conchoid of Nicomedes, with equation 

(R - R * ) 2 ~ 2  = (M' - M + 1 + ~ ) ~ ( 1  - w2). (5.9) 

For each value of M there are two branches of the curve (5.9), a lower branch for 
w > 0 and an upper branch for w < 0 (see figure 5).  The curves in figure 2(a) which 
evolve from the Stokes form to the boundary-layer form of type I, as R increases 
from zero, correspond to the lower branch described by the conchoid equation above, 
and those in figure 2(b) which evolve from the boundary-layer form of type 11, as R 
decreases from infinity, correspond to the upper branch described by the conchoid. 
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FIGURE 7. The bifurcation diagram in the ( M ,  w/R)-plane for R = 15, co. Note that 
w/R = [F’/Rx],=o, = Lf’/2y],=0 when R = 00. 

It 1 

I 

FIGURE 8. Plot of w versus R for M = 2. 

From the results presented in figure 2 we infer the development of the bifurcation 
diagrams for constant values of R to be qualitatively that shown in figure 6. 

We have recalculated the bifurcation curve of figure 1 for other values of the 
Reynolds number. The curve for R = 15 is shown in figure 7; the curve for R = 00 is 
repeated for comparison, and it can be seen that the curves are qualitatively similar. 
For these values of R there is no solution for M < Mc(R) but two solutions, of types 
I and 11, for M > Mc(R) ;  Mc(15) = 3.43, whereas MJm) = 3.75. The branch of 
the curve corresponding to the solution of type I1 seems for R = 15 to have a local 
maximum at the point (4.8, -0.06); however, the ranges of integration needed for this 
region of the bifurcation plane are very large, so we have not proceeded with larger 
values of M .  

We have further obtained results for M < Mc(m). For M = 2 the variation of w / R  
with R is shown in figure 8; note the turning point at R NN 7.1. We anticipate another 
turning point at R NN 6.95. The calculations were terminated at R = 6.95 because 
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again the swirl velocity was becoming very flat at the origin, as if a thin shear layer 
were about to form away from the origin. 

6. Conclusions 
This paper is a report of a large number of detailed analytic, asymptotic and 

numerical results about Long’s vortices and their spatial stability. However, we have 
not yet solved numerically any of the spatial stability problems. So, for the present, 
we must piece together whatever other evidence is available to infer the stability 
and instability of the vortices as best we can. First, recall that in general one real 
temporal eigenvalue increases through zero at a turning point, so that at least one 
of the two branches which coalesce at a turning point represents unstable flows: we 
noted this in $1 when introducing Long’s results. All the flows are presumably stable 
in the Stokes limit of small Reynolds number, and both types of flow are unstable (to 
helical disturbances) as R + co. This suggests that flows of type I become stable as R 
decreases below a critical value which depends on M .  The stability of flows of type I1 
is more difficult to discern. For M < M’, when there is no loop of the solution curve 
in the (R,  w/R)-plane, the helical instability of flows of type I1 presumably dies out as 
R decreases; however, there is no turning point on this branch as R decreases, so it is 
not clear whether an axisymmetric instability at R = cc dies out. Again, for M > M’, 
when the solution curves have loops, a flow of type I1 has two turning points where 
there may be exchange of stabilities as R decreases. This presents the possibility of 
vortex breakdown and hysteresis as R increases and decreases, if at least two of the 
solutions are stable. 

We have noted difficulties in satisfying numerically the boundary conditions at 
infinity, because the flow there decays algebraically rather than exponentially. This 
mathematical difficulty is likely to have a physical counterpart. It raises the possibility 
that conditions quite far from a vortex affect the structure of the vortex significantly, 
so that in a laboratory experiment the surroundings of the vortex as well as the inlet 
and outlet conditions may affect the vortex. 

Long’s vortex and the well-known flows due to a rotating disc provide rare examples 
of a flow with non-zero helicity density which admits simple mathematical expression, 
although the helicity density of Long’s vortex is singular at the origin z = 0 because 
the velocity field is singular there. We have done no more than evaluate a partial 
integral of the helicity density in $2.1 and shown that it is not identically zero. It 
would be more interesting to see how the helicity evolves in time. The conservation of 
helicity in an inviscid fluid would seem to require that an unstable helical perturbation 
extracts its helicity from the basic flow because the total helicity of the perturbed 
flow, basic flow plus perturbation, is conserved. 

At a late stage in the preparation of the manuscript of this paper we learned of 
some independent work of Shtern & Hussain (1993) on a closely related problem. 
Both they and we have used the same similarity form of solution of the Navier- 
Stokes equations, but whereas we have followed Long in using cylindrical polar 
coordinates, Shtern & Hussain have used spherical polar coordinates. The use of 
the latter leads to a simpler form of the ordinary differential equations, which would 
appear to be advantageous. However, whereas we, following Long, have imposed the 
boundary condition F’(co) = 2-1/2, Shtern & Hussain have imposed (in our notation) 
lim,,,x-’F(x) = 0. They have also used a slightly different definition of the flow 
force, M ,  but both definitions coincide in the boundary-layer limit. Many of our 
results are qualitatively similar to theirs, but they have not treated stability at all. It 
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follows that the two sets of results may be regarded as complementary, illuminating 
the rich structures of two closely related families of vortices in a viscous fluid. 
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